Möchten Sie die Darstellung der Website ihren persönlichen Bedürfnissen anpassen?
Die Einstellungen können Sie auch später noch über das Symbol
ändern.
Netzhautimplantate: Form und Größe von 3D-Nanoelektroden beeinflusst Zellkontakt
Netzhautimplantate: Form und Größe von 3D-Nanoelektroden beeinflusst Zellkontakt
"Kopplung von Biochips und Neuro-Implantaten - Form und Größe von 3D-Nanoelektroden beeinflusst Zellkontakt" heißt es in einer Meldung des Forschungszentrums Jülich, die auch für die künftige Entwicklung von Netzhautimplantaten relevante Informationen enthalten könnte:
Jülicher Wissenschaftlerinnen und Wissenschaftler haben untersucht, wie 3D-Nanoelektroden beschaffen sein müssen, damit biologische Zellen optimal mit ihnen Verbindung aufnehmen können. Als ideal erwies sich ein möglichst langer dünner Stiel mit einer breiten Kappe. Die Erkenntnisse sind etwa für die Entwicklung von Netzhaut-Implantaten und hochpräzisen Biosensoren interessant, mit denen sich Medikamente testen oder die Ursachen neurodegenerativer Erkrankungen erforschen lassen. Die Ergebnisse wurden in der Fachzeitschrift ACS Nano veröffentlicht.
Wichtige Zellfunktionen
Zellen besitzen die Fähigkeit, Fremdkörper zu umhüllen, um sie sich anschließend einzuverleiben. Der Prozess ermöglicht es der Zelle, Boten- und Nährstoffe aufzunehmen. Aber der Mechanismus ist auch ein Einfallstor für Viren und Bakterien. „Bei der Entwicklung von nanostrukturierten 3D-Oberflächen für bioelektronische Schnittstellen nutzen wir dieses Verhalten aus, um die Verbindung zwischen der Zellmembran und der Elektronik zu verbessern“, erklärt [Prof] Andreas Offenhäusser, Direktor des Jülicher Peter Grünberg Instituts, Bereich Bioelectronics (PGI-8 / ICS-8).
Design von Bedeutung
Die winzigen 3D-Nanoelektroden wirken auf biologische Zellen wie ein Köder, der schließlich von ihnen geschluckt wird. Doch auf welchen Köder, oder eher: auf welche Form, die Zellen am besten ansprechen, war bislang offen. Weltweit werden verschiedene Ansätze verfolgt. Einige beschränken sich auf Elektroden, die nur aus einem einfachen zylindrischen Stiel bestehen, andere sehen zusätzlich noch eine pilzähnliche Kappe am oberen Ende vor. Unter dem Fokussierten Ionenstrahl- und Rasterelektronenmikroskop konnten die Jülicher Biophysiker zeigen, dass die Wahl des Designs tatsächlich den Zellkontakt beeinflusst. Optimal ist ein möglichst langer dünner Stiel mit breiter Kappe, wie die Wissenschaftler mithilfe eines theoretischen Modells errechnet haben.
Theoretische Modellierungen zeigen, wie sich die Zellmembran verformt und ermöglichen es, die optimale Form vorherzusagen.
„Für eine Vielzahl von Anwendungen ist es wichtig, dass die Zelle sehr nah an der Elektrode anliegt. Schon der Abstand von einem zehntausendstel Millimeter reicht aus, und man kann nichts mehr messen“, verdeutlicht Andreas Offenhäusser.
Vielfältige künftige Nutzungschancen
Die Kopplung von lebendem Gewebe und anorganischer Halbleiterelektronik zu verbessern, ist eine der größten Herausforderungen bei der Entwicklung bioelektronischer Komponenten. Das Anwendungsspektrum reicht von Neuroprothesen, die eines Tages defekte Organe ersetzen könnten, bis hin zu hochpräzisen Sensorchips für In-Vitro-Experimente. Letztere ermöglichen es zunehmend, mithilfe einzelner Zellen, die sich auf dem Chip ansiedeln, preisgünstig, schnell und ethisch verträglich die Wirkung von Medikamenten zu überprüfen oder Prozesse zu untersuchen, die als Ursache für Hirnerkrankungen infrage kommen.
Originalpublikation
Interfacing Electrogenic Cells with 3D Nanoelectrodes: Position, Shape, and Size Matter; Santoro F, Dasgupta S, Schnitker J, Auth T, Neumann E, Panaitov G, Gompper G, Offenhäusser A ACS Nano, 2014 Jun 25 (published online ahead of print), DOI: 10.1021/nn500393p Abstract zur Originalpublikation.
Quelle: Forschungszentrum Jülich